All functions

add_colour_vector_to_concordance()

Add colour vector to concordance data frame

apply_eln2015_cyto()

Apply ELN2015 stratification based on cytogenetics

apply_eln2017_cyto()

Apply ELN2017 stratification based on cytogenetics

apply_eln2017_rna()

Apply ELN2017-RNA stratification

apply_expression_signature_reclassification()

Update an existing stratification by applying a gene expression score

aps_volcano_plot()

Draw Volcano Plot for APS DE Comparison

calculate_reference_set_coefficient_of_variation()

Calculate reference set coefficient of variation

calculate_reference_set_mean_expression()

Calculate reference set mean expression

connect_to_aml_project_orm()

Connect to AML Project ORM Database

construct_rna_qc_dataframe()

Construct a data frame of RNA-SeQC results

construct_sailfish_gene_dataframe()

Construct a data frame of Sailfish gene-level results

convert_sailfish_df_to_matrix()

From a data frame of Sailfish gene-level results, construct an expression matrix

density_plotter()

Generate a density-plot of expression of selected genes, faceted by selected feature

downregulated_genes()

Pull down-regulated genes

eng_log_breaks()

Generate a set of breaks using the 'Engineer's log scale'

expression_matrix_to_long_df()

Transform expression matrix to long data frame

expression_summary()

Summarize distribution characteristics for a column of interest

fit_coxph()

Fit a Cox proportional hazards model

gather_expression_matrix_to_tidy_df()

Convert an expression matrix to a tidy DF

get_cluster_assignments_for_k()

Retrieve cluster assignments for a given value of k

ggsave_pdf_and_png()

Save ggplot to PDF and PNG

grid_arrange_shared_legend()

Generate a grid of plots with a shared legend

group_tally_table()

Group / Tally / Table

hit_plotter()

Generate a dot-plot of expression of selected genes, facetted by selected feature

limma_logFC_to_signed_foldchange()

Convert limma's logFC value to signed fold-change

log2_plus1_transform()

Transform data by taking the log2(count+1)

long_df_to_ranked_matrix()

Transform long data frame to sorted matrix

matrix_glimpse()

# Report basic information about a matrix

munge_voom_to_ipa()

Munge differential expression hits in voom format to IPA-friendly format

nest_libraries_by_patient()

Add nested library information to a patient-level data frame

num_to_text()

Convert a small number to a text representation

parse_pavfinder_0.2.0()

Parse PAVfinder 0.2.0 output

parse_pavfinder_0.3.0()

Parse PAVfinder 0.3.0 output

pathway_enrichment_plot()

Generate a plot of enriched pathways

plot_heatmap_for_k()

Plot a pheatmap for a single value of k

plot_rf_predictions()

Plot predictions from a randomForest model

plot_survival()

Plot survival curves

plot_vars_by_coverage()

This function takes the long and wide data frames, and plots all variants by coverage, colouring them by concordance status

plot_vars_by_vaf()

Join to the plotting frame and re-plot for VAF

pretty_kable()

Set a function for pretty-printing kables

pretty_num()

Set a function for pretty-printing numbers in the text

pull_enrichr_enriched_terms()

Pull EnrichR enriched terms for a single pathway source

pull_enrichr_terms_to_plot()

Identify enriched terms across cohorts

random_forest_summary()

From a random forest model generated by caret, generate summary plots

read_filled_variant_tsv()

This function reads in the 'long' TSV variant sheets generated by the makefile

rescale_genes_by_reference()

Rescale all genes by reference expression levels

retrieve_db_comments()

Retrieve DB Comments

retrieve_db_curated_results()

Retrieve DB Curated Results

retrieve_db_libraries()

Retrieve DB Libraries

retrieve_db_paths()

Retrieve DB Paths

retrieve_db_specimens()

Retrieve DB Specimens

rf_predictions()

Extract predictions from a random forest model

rna_seqc_parser()

Parse output from RNA-SeQC v1.1.8

run_cna_workflow()

Run the CNA workflow

run_gage_for_feature()

Run GAGE gene-set enrichment analysis for a given feature

run_voom_for_feature()

Run voom for a given feature comparison

sailfish_gene_parser_post_0.7.0()

Parse gene-level output from Sailfish >=0.7.0

sailfish_isoform_parser_post_0.7.0()

Parse isoform-level output from Sailfish >=0.7.0

sailfish_isoform_parser_pre_0.7.0()

Parse isoform-level output from Sailfish <0.7.0

scale_by_rolling_mean()

Scale expression estimates by rolling mean

select_by_position()

Quick function for mapping to select out list items

split_gatk_format_vals()

Split a FORMAT string from GATK-haplotype to get simpler statistics

spread_expression_df_to_matrix()

Convert a 'tidy' expression DF to a matrix

spread_filled_snv_df_to_wide()

This function takes the 'long, filled' data frames with variant observations, and converts them to 'wide' format

subset_genes_by_thresholds()

Subset expression matrix by thresholds

subset_genes_for_plots()

Subset the TPM matrix to the genes of interest

subset_heatmap()

Generate a heatmap for a subset of genes

subset_pc_plot()

Generate a prinicple component plot for a subset of genes, coloured by a given feature

subtype_to_disease()

From a subtype indication, return a simplified disease type

tfl_split_sort()

A function to sort TFL IDs into ascending order

train_caret_rf()

Train a random forest model with caret

upregulated_genes()

Pull up-regulated genes

volcano_plotter()

Generate a volcano plot of expression hits